[NEET - 2020]
\[(a)\pi rad\]
\[(b)\frac{3\pi}{2} rad\]
\[(c)\frac{\pi}{2} rad\]
\[(d)zero\]
Solution:
\[y = a \sin (\omega t)\]
\[V=\frac{dy}{dt} = a\omega \cos (\omega t)\]
\[a=\frac{dv}{dt} = -a\omega^{2} \sin (\omega t)\]
\[a=\frac{dv}{dt} = a\omega^{2} \sin (\omega t-\pi)\]
phase difference between
displacement and acceleration is
\[\pi\]
0 comments:
Post a Comment