If the temperature of black body is increased by a factor of 2, the amount of energy and volume radiated increases by a factor of . . . . . . . . . .

 ( a ) 2               ( b ) 4               ( c ) 8               ( d ) 16

 

Definition


A black body is a theoretical object that absorbs all radiation that incident on its surface. As there is no reflection of light at room temperature the body is appears black ( that’s why it is called as black body ). But in real case when heated a ‘black body’ can radiate depending upon the temperature to which it is heated. This is known as ‘black body radiation’.

 



According to Stefan the power radiated from the blackbody can be determine by the formula

P = σ A T4  . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 1 )

Where

P = Power radiated from the black body in W ( J / s ) 

σ = Stefan's Constant 5.67 x 10 - 8 W m - 2 K - 4  .

A = Surface area of black body ( m ² )

 T = Temperature of body ( in Kelvin Scale [ K ] )

In other words we can say that the power radiated by the body is varies linearly with the forth power of its absolute temperature ( T ) . Therefore the total energy increases so much for a relatively small increase in temperature. 


Stefan's Law ( P = σ A T)

 

   Problem:

 If the temperature of black body is increased by a factor of 2, the amount of energy and volume radiated increases by a factor of . . . . . . . . . .

Solution :

Let us consider that the Pbe the power radiated from the black body in W ( J / s ) at initial temperature  T( K ).   ‘ A ’  be the  Surface area of black body  and  Pbe the power radiated from the black body in W ( J / s ) at final  temperature  T( K ) .

At initial temperature  Tthe Stefan’s law can be written as

\[P_{1} = \sigma A T_{1}^{4}\]   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 )

Similarly at final temperature  Tthe Stefan’s law can be written as

\[P_{1} = \sigma A T_{1}^{4}\]  . . . . . . . .. . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 3 )

Taking ratio of eqn ( 2 ) and ( 3 ) we get

 \[\frac{P_{1}}{P_{2}} = \frac{\sigma AT_{1}^{4}}{\sigma A T_{2}^{4}}\] . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 4 )

But

2 T= T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( Given )

Putting this value in equation ( 4 ) we get ,

\[\frac{P_{1}}{P_{2}} = \frac{\sigma AT_{1}^{4}}{\sigma A 2 T_{1}^{4}}\] . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .( 5 )

\[\frac { P _ { 1 } } { P _ { 2 } } = \frac {1} { 16 }\]


=  16 P  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( Answer )

 

Therefore we can say that if If the temperature of black body is increased by a factor of 2, the amount of energy and volume radiated increases by a factor of 16 (Answer : d)
SHARE

Milan Tomic

Hi. I’m Designer of Blog Magic. I’m CEO/Founder of ThemeXpose. I’m Creative Art Director, Web Designer, UI/UX Designer, Interaction Designer, Industrial Designer, Web Developer, Business Enthusiast, StartUp Enthusiast, Speaker, Writer and Photographer. Inspired to make things looks better.

  • Image
  • Image
  • Image
  • Image
  • Image
    Blogger Comment
    Facebook Comment

0 comments:

Post a Comment

In a potentiometer circuit, a cell of EMF 1.5 V gives a balance point at 36 cm length of wire. If another cell of EMF 2.5 V replaces the first cell, then at what length of the wire, does the balance point occur?

In a potentiometer circuit, a cell of EMF 1.5 V gives a balance point at 36 cm length of wire. If another cell of EMF 2.5 V replaces the fi...