Two concentric sphere kept in air have radii R & r . they have similar change and equal charge density σ. The electric potential at their common centre is? ( MHT - CET ~ 2014 )

 

\[ a ) \frac { \sigma (R + r) } { \epsilon _{ o } } \]  

\[ b ) \frac { \sigma (R - r) } { \epsilon _{ o } } \]  

\[ c ) \frac { \sigma (R - r) } { 2 \epsilon _{ o } } \]

\[ d ) \frac { \sigma (R - r) } { 4 \epsilon _{ o } } \]

    

Solution:




 

Electric potential ( Definition ) : The electric potential at a point in electric field is defined as the amount of work done to bring unit positive charge from infinite distance to that point against the direction of electric intensity.

I . e .

\[ V = \frac { w } { q_{ o } } \]

Where \[q _{ o } \]is a unit charge                                                                                                                            

i.e \[q _{ o } =1\]

 - - - - - - - - - ( 1 )

But ,

\[W = \frac { q } { 4 \pi \epsilon _{o} r }\]


Putting this value in above equation we get,

\[V = \frac { q } { 4 \pi \epsilon _{o} r }\]

                                                                                                                                          - - - - - - - - - ( 2 )

The potential at center due to sphere 1 is

\[V _ { 1 } = \frac { q } { 4 \pi \epsilon _{ o } R }\]

                                                                                                                                    - - - - - - - - - ( 3 )

And due to sphere 2 is:

\[V _ { 2 } = \frac { q } { 4 \pi \epsilon _{ o } r }\]


                                                                                                                                          - - - - - - - - - ( 4 )

Therefore the electric potential at common centre can be written as  

\[V = V_{1}+ V_{2}\]

\[V =  \frac { q } { 4 \pi \epsilon _{ o } R } + \frac { q } { 4 \pi \epsilon _{ o } r }\]

\[ V =\frac { q } { 4 \pi \epsilon _{ o } } ( \frac { 1 } { R } + \frac { 1 } { r } ) \]

\[ V =\frac { q } { 4 \pi \epsilon _{ o } } ( \frac { R+r } { Rr } ) \]

             - - - - - - - - - ( 5 ) 

But σ is surface charge density i . e .

 \[\sigma = \frac{ ( total charge on the surface of sphere q ) } {( surface area of sphere ) } \]

 Therefore ,

\[\sigma  = \frac { q } { A } \]
\[\sigma = \frac { q } { 4 \pi R }\]

 Equation ( 5 ) becomes

\[V=\sigma \frac { ( R + r ) } { \epsilon _{ O } } \]

 

The correct option is : option [ a ]

SHARE

Milan Tomic

Hi. I’m Designer of Blog Magic. I’m CEO/Founder of ThemeXpose. I’m Creative Art Director, Web Designer, UI/UX Designer, Interaction Designer, Industrial Designer, Web Developer, Business Enthusiast, StartUp Enthusiast, Speaker, Writer and Photographer. Inspired to make things looks better.

  • Image
  • Image
  • Image
  • Image
  • Image
    Blogger Comment
    Facebook Comment

0 comments:

Post a Comment

In a potentiometer circuit, a cell of EMF 1.5 V gives a balance point at 36 cm length of wire. If another cell of EMF 2.5 V replaces the first cell, then at what length of the wire, does the balance point occur?

In a potentiometer circuit, a cell of EMF 1.5 V gives a balance point at 36 cm length of wire. If another cell of EMF 2.5 V replaces the fi...